PAPER I (Theory) Biomolecules and Biophysical Techniques

Marks: 75 (Internal Assessment= 19 & End Semester = 56)

Biomolecules

Course Description	Instructor	Contact Hours
Course Description Water: Molecular Structure of Water	BK	1.0
Water: Molecular Structure of Water	BK	1.5
Water: Hydrogen bonds & Physical Properties of water	BK	3.5
pH, pKa and buffers in laboratory and biological system	BK	1.0
Properties, structures of monosaccharide's(glucose & fructose)	BK	1.5
Properties, structures of disaccharides(sucrose, maltose and lactose)	BK	2.5
Properties, structures of polysaccharides(dextrins, starch, glycogen, cellulose)	BK	2.0
Stereochemistry of sugars- chiral carbon, epimers, anomers, mutarotation	BK	2.5
Chair and Boat form, glycosides, glycopyranose and fructopyranose	HSR	3.0
Alpha Amino acid : structure and properties	HSR	1.5
Proteins: Primary structure (structure of peptides bonds- restricted rotation, cis/trans)	HSR	3.0
Proteins: Secondary Structure (α, β and supersecondary structure)	HSR	2.5
Proteins: Tertiary Structure- Protein folding	HSR	1.5
Proteins: Quaternary Structure		1.5
Fatty Acids: Nomenclature and chemical properties	JW	
Lipids Classification: Simple and Complex	JW	1.5
General Structure and Function of major lipid subclasses: acylglycerols, phosphoglycerides, spingolipids, waxes, terpene, steroids and prostaglandins.	JW	6.0
Nucleotides: Chemistry and Properties	KH	1.5
Nucleic Acids: DNA forms and function	KH	2.5
Nucleic Acids: DNA forms and functions	KH	2.0

Biophysical Techniques

Course Description	Instructor	Contact Hours
Course Description	JW	1.5
Principle and application of Centrifugation	HSR	1.5
Principle and application of Spectroflourimetry	KH	2.0
Principle and application of Nuclear Magnetic Resonance	JW	3.5
Microscopy- Light and Electron Microscopy		
Principle and application of Chromatography (Gel, lon-exchange and Affinity)	HSR	3.5
UV and Visible Spectrophotometry	HSR	3.0
X-Ray Crystallography	HSR	1.5
Electrophoresis- Polyacrylamide Gel Electrophoresis(PAGE) and SDS-PAGE	KH	2.0
Electrophoresis- Polyad ylamide Oct Electrophoresis (1769) 4	JW	1.5
Isotopes, radioactive decay, α, β and γ radiation	JW	3.5
Detection of radioactivity- scintillation counting, quenching and autoradiography	011	0.0

PAPER I (Practical) Biomolecules and Biophysical Techniques

Marks: 25 (Internal Assessment= 06 & End Semester = 19)

5 Columbia Vandorson Hasselhalch Equation	BK	3.0
Preparation of Buffer Solution using Henderson-Hasselbalch Equation	BK	3.0
Verification of Beer-Lambert's Law	KH	3.0
Estimation of Protein by Lowry's Method	KH	3.0
Estimation of Protein by Bradford's Method	KH	3.0
Estimation of DNA using Diphenylamine	KH	3.0
Estimation of RNA using Orcinol	NП	3.0

	Subject Manne	ardo *	Sup-topic	Leacher	2
1	Cell Biology	Prokaryotes	Cell Structure & components	JW	5th Feb
2	Physiology	Physiology	Introduction to Physiology	KH	5th Feb
3	Cell Biology	Prokaryotes	Cell Structure & components (continuation)	JW	6th Feb
4	Physiology	Hormones	General Classification of Hormones	HSR	6th Feb
w	Physiology	Physiology	Introduction to Physiology (continuation)	KH	7th Feb
9	Physiology	Hormones	General Classification of Hormones (continuation)	HSR	7th Feb
1	Physiology	Hormones	General Classification of Hormones (continuation)	HSR	8th Feb
00	Physiology	Hormones	General Classification of Hormones (continuation)	HSR	8th Feb
6	Physiology	Physiology	Homeostasis	KH	9th Feb
10	Physiology	Physiology	Homeostasis (continuation)	KH	9th Feb
11	Cell Biology	Prokaryotes	Cell Structure & components (continuation)	JW	10th Feb
12	Cell Biology	Cell Structure	Plant & Animal Cells	OK	10the Feb
13	Cell Biology	Prokaryotes	Cell Structure & components	JW	12th Feb
14	Physiology	Physiology	Introduction to Physiology	KH	12th Feb
15	Cell Biology	Prokaryotes	Cell Structure & components (continuation)	JW	13th Feb
16	Physiology	Hormones	General Classification of Hormones	HSR	13th Feb
17	Physiology	Physiology	Introduction to Physiology (continuation)	KH	14th Feb
18	Physiology	Hormones	General Classification of Hormones (continuation)	HSR	14th Feb
119	Physiology	Hormones	General Classification of Hormones (continuation)	HSR	15th Feb
20	Physiology	Hormones	General Classification of Hormones (continuation)	HSR	15th Feb
21	Physiology	Physiology	Homeostasis	KH	16th Feb
22	Physiology	Physiology	Homeostasis (continuation)	KH	16th Feb
23	Cell Biology	Prokaryotes	Cell Structure & components (continuation)	JW	17th Feb
24	Cell Biology	Cell Structure	Plant & Animal Cells	OK	17the Feb
	3	aman na mao		+	

14	24	23	22	21	0.4	30	19	18	17	16	15	14	13	3 1	13	=	10	9	ox		1 0	, ,	Ji	4	3	2	1	SI No.	
TITO AND MAN TO THE OW	Molecular Biology	Microbiology	Molecular Biology	Microbiology	0,000	Microbiology	Molecular Biology	Immunology	Immunology	Immunology	Microbiology	Molecular blorogy	M. Louise Biology	Missokiology	Molecular Biology	Microbiology	Microbiology	Molecular Biology	Micropiology	Missabiology	Molecular Biology	Immunology	Microbiology	Molecular Biology	Molecular Biology	Immunology	Microbiology	Subject Name	A T I L NI
Toronomy	DNA	Taxanomy	Nucleic acid	MICIODIAI Octiones	Missokial Genetics	Taxanomy	DNA	Immunity	Immunity	шшину	Immunity	Tavanomy	DNA	Microbial Genetics	Nucleic acid	Taxanomy	Microbial Genetics	DNA	TATION COMM. COMMAN	Microbial Genetics	Nucleic acid	Immunity	Taxanomy	DNA	Nucleic acid	Пішиніу	Taxanoity	Tavanomy	Tonic
Classification of microorganism	DNA Replication (semi conservative)	Types & General Characteristics(com)	Experimental Evidence	Table Tridence	Introduction to Genetics (continuation)	Types & General Characteristics	DNA Replication (semi conservative)	Innate & Adaptive infilming(conn)	Illiance Conapure Summitty (conti)	I and & Adaptive Immunity(conti)	Innate & Adaptive Immunity	Classification of microorganism (cont)	DNA Replication in prokaryotes(cont)	Introduction to Genetics (continuation)	Nucleic acid as genetic (continuation)	Classification of microorganism (cont)	Introduction to defletics (continuanton)	DIVIN Explusion of Properties (continuation)	DNA Replication in prokarvotes(cont)	Introduction to Genetics	Nucleic acid as genetic (continuation)	Concept of Immunity (continuation)	Classification of microorganism (cont)	DNA Replication in prokaryows	Nucleic acid as generic	March as genetic		ion of microorganism	Sub-topic Sub-topic
OK	JW			BK) KH	1	244	IW	HSR	HSR	HSR	OK	JW	KH	BK	Op Op	OK	KH	JW	KH	BK	HSK	5	OK	WI	BK	HSR	OK	Leacher
12th reb	10th Feb	10th Eah	10th Feb	10th Feb	10th Feb	104 E-F	0+h Eah	9th Feb	9th Feb	9th Feb	8th Feb	8th Feb	8th Feb	Sin Feb	7 th Feb	7th Eah	7th Feb	7th Feb	7th Feb	6th Feb	6th Feb	om Feo	Col Esh	6th Feb	5th Feb	5th Feb	5th Feb	5th Feb	Date

48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	07
Molecular Biology	Microbiology	Molecular Biology	Microbiology	Microbiology	Molecular Biology	Immunology	Immunology	Immunology	Microbiology	Molecular Biology	Microbiology	Molecular Biology	Microbiology	Microbiology	Molecular Biology	Microbiology	Molecular Biology	Immunology	Microbiology	Molecular Biology	Molecular Biology	Immunology
DNA	Taxanomy	Nucleic acid	Microbial Genetics	Taxanomy	DNA	Immunity	Immunity	Immunity	Taxanomy	DNA	Microbial Genetics	Nucleic acid	Taxanomy	Microbial Genetics	DNA	Microbial Genetics	Nucleic acid	Immunity	Taxanomy	DNA	Nucleic acid	Immunity
DNA Replication (semi conservative)	Types & General Characteristics(cont)	Experimental Evidence	Introduction to Genetics (continuation)	Types & General Characteristics	DNA Replication (semi conservative)	Innate & Adaptive Immunity(conti)	Innate & Adaptive Immunity(conti)	Innate & Adaptive Immunity	Classification of microorganism (cont)	DNA Replication in prokaryotes(cont)	Introduction to Genetics (continuation)	Nucleic acid as genetic (continuation)	Classification of microorganism (cont)	Introduction to Genetics (continuation)	DNA Replication in prokaryotes(cont)	Introduction to Genetics	Nucleic acid as genetic (continuation)	Concept of Immunity (continuation)	Classification of microorganism (cont)	DNA Replication in prokaryotes	Nucleic acid as genetic	Concept of Immunity
JW	OK	BK	KH	OK	JW	HSR	HSR	HSR	OK	JW	KH	ВК	OK	KH	JW	KH	BK	HSR	OK	JW	BK	HSR
17th Feb	17th Feb	17th Feb	17th Feb	16 th Feb	16 th Feb	16 th Feb	16 th Feb	15th Feb	15th Feb	15th Feb	15th Feb	14th Feb	14th Feb	14th Feb	14th Feb	13th Feb	13th Feb	13th Feb	13th Feb	12th Feb	12th Feb	12th Feb

DR. OMARLIN KYNDIAH
BIOCHEMISTRY DEPARTMENT

PAPER V (Theory) Intermediary Metabolism

Marks: 75 (Internal Assessment= 19 & End Semester = 56)

Course Description	Instructor	Contact Hours
Introduction to Metabolism	OK	1.0
Carbohydrates Metabolism	OK	1.5
Glycolysis	OK	3.0
Warburg Effect and Alcoholic fermentation	OK	1.5
Tricarboxylic Acid Cycle	OK	3.0
Regulation of Glycolysis	OK *	2.0
Regulation of TCA Cycle	OK	1.5
Gluconeogenesis	OK	1.5
Pentose Phosphate Pathway	OK ·	2.5
	XY	2.0
Glycogenesis	XY	2.5
Glycogenolysis	XY	1.0
Nucleotide Metabolism – an introduction	XY	1.5
Source of atom in purine and pyrimidine molecule	XY	3.0
Biosynthesis of Purine	XY	3.0
Biosynthesis of Pyrimidine	XY	1.5
Catabolism of Purine	XY	1.5
Catabolism of Pyrimidine	XY	3.5
Regulation of Purine and Pyrimidine biosynthesis	JW	1.0
Lipid Metabolism- an introduction	JW	1.0
Hydrolysis of triacylglycerol	JW	0.5
Transport of fatty acids into mitochondria	JW .	1.5
β-oxidation of saturated fatty acids		3.0
Oxidation of unsaturated and of odd chain fatty acids	JW	0.5
ATP yield from from fatty acid oxidation	JW	
Biosynthesis of saturated and unsaturated fatty acids	JW	4.0
Biosynthesis and regulation of triglycerides	JW	2.0
Biosynthesis and regulation of cholesterol	JW	3.0
Amino acid Metabolism – General Reactions : transamination, oxidative deamination and decarboxylation	XY	2.5
Urea Cycle	XY	1.5
Biosynthesis of Glutamine & regulation	OK	3.0
Biosynthesis of Tryptophan & regulation	OK	4.5
Biosynthesis of Histidine & regulation	OK	4.5
Degradation of amino acids	OK	2.5
Introduction to bioenergetics	BK	1.0
Photosynthetic electron transfer chain	BK	2.0
Respiratory electron transfer chain	BK	2.0
Photophosphorylation	BK	1.5
Mechanism of ATP Production	BK	1.5
Inhibitors of Electron Transfer Chain (ETC)	BK	1.0
Uncouplers of oxidative phosphorylation	BK	1.5

PAPER V (Practical) Intermediary Metabolism

Marks: 25 (Internal Assessment= 06 & End Semester = 19)

Isolation of casein from milk	BK	6.0
Isolation and Estimation of starch from potato	BK	6.0
Isolation and Estimation of glycogen from animal tissue	BK	7.0
Isolation and Estimation of photosynthetic pigments	OK	4.0

Course-level learning outcomes that a student of this course is required to demonstrate are:

- To understand the importance of lipids as storage molecules and as structural component of biomembranes.
- Understanding the importance of high energy compounds, electron transport chain, synthesis of ATP under aerobic and anaerobic conditions.
- To acquire knowledge related to the role of TCA cycle in central carbon metabolism, importance of anaplerotic reactions and redox balance.
- Students will be exposed with the fact that perturbations in the carbon metabolism can lead to various disorders such as diabetes and cancer.
- Appreciation of the fact that differences in the properties of metabolic enzymes of the host and pathogens can be exploited for the development of new drugs.
- To gain insights into metabolic engineering for the production of useful biomolecules.

Suggested Readings (Theory):

Nelson D.L and Cox Micheal M- Lehninger's Principles of Biochemistry (Seventh Edition), Macmillan Publication
Jeremy M. Berg John L. Tymoczko Gregory J. Gatto, Jr. Lubert Stryer- Biochemistry (Eight Edition), W.H.Freeman & Co Ltd
Zubay G (1999) Principle of Biochemistry (Fourth Edition), WC Brown Communication, Inc.
Harper's Illustrated Biochemistry 31st Edition (2018), Murray et al. Mc Graw Hill Publication
Voet D and Voet JG (2012) Principles of Biochemistry (4th Edition), John Wiley & Sons
Devlin DT. Textbook of Biochemistry with Clinical Correlation (2010), 7th Edition. Wiley Publication

Suggested Readings (Practical):

Boyer RF (2009) Modern Experimental Biochemistry, 5th Edition. Impression Pearson Edn.

Sadasivam S and Manickam A (2005) Biochemical Methods, New Age Int. Publication, New Delhi
Plummer DT (2008 Reprint) An Introduction to Practical in Biochemistry, Third Edn. Tata McGraw Hill

PAPER VI (Theory) Nutritional and Clinical Biochemistry

Marks: 75 (Internal Assessment= 19 & End Semester = 56)

Course Description	Instructor	Contact Hours
Nutrition and dietary habit – an introduction	BK	1.0
Nutritive value of carbohydrates, fats, proteins	BK	2.0
Nutritive value of Vitamins (A,D,E,K B-complex and Vitamin C)	BK	3.0
Nutritive value of minerals (Ca, Fe and Iodine)	BK	2.0
Basal Metabolic Rate (BMR)	BK	1.5
Specific Dynamic Action (SDA) and Recommended daily Allowance(RDA) of food	BK *	2.5
Protein-Calorie Malnutrition- Kwashiorkor and Maramus	BK	2.5
Over nutrition and Obesity	BK	2.0
	•	
Basic Concept of Clinical Biochemistry	XY	1.5
Definition and scope in Health and Disease	XY	1.5
Collection and preservation of biological fluid- blood, plasma, serum, urine, cerebral spinal fluid (CSF) and amniotic fluid.	XY .	4.0
Analysis of blood, Urine and CSF	ΧY	3.0
Normal value of important constituents in blood(Plasma/serum)	ΧΥ	2.5
CSF and Urine	XY	1.5
Clearance Test for Urea	XY	1.5
Enzymes used in clinical diagnosis	HSR	1.5
Enzyme pattern in health and diseases (lipases, amylase, cholinesterases, alkaline and acid phosphatise, SGOT, SGPT, LDH and CPK)	HSR	3.0
Isozymes and diagnostic test	HSR	2.5
Functional test of Kidney and Liver	HSR	3.0
Inborn errors of metabolism (alkaptonuria, phenylketonuria, albinism)	HSR	2.0
Metabolic disorders (Hypo- and Hyper- glycemia, gout and porphyrias)	HSR	2.5

PAPER VI (Practical) Nutritional and Clinical Biochemistry Marks: 25 (Internal Assessment= 06 & End Semester = 19)

Estimation of blood haemoglobin	JW	4.5
Estimation of blood glucose	JW	5.0
Estimation of serum GOT	HSR	6.0
Estimation of serum GPT	HSR	6.0
Estimation of blood Urea	HSR	6.0
Estimation of serum alkaline phosphatase	HSR	6.0
Estimation of bilirubin	HSR	6.0
Estimation of creatinine	HSR	6.0

PAPER III (Theory) Proteins and Enzymes

Marks: 75 (Internal Assessment= 19 & End Semester = 56)

Proteins

Course Description	Instructor	Contact Hours
Protein Isolation and purification techniques – an introduction	HSR	3.0
Salt Precipitation	HSR	2.0
Dialysis	HSR	1.5
Chromatography	HSR -	4.0
Criteria for homogeneity	HSR	1.5
Protein Sequencing	HSR	4.0
Protein Turnover	HSR .	2.5

Enzymes

Course Description	Instructor	Contact Hours
Enzymes – an introduction and properties	OK	2.0
Significance of activation energy and free energy	OK	1.5
Enzymes Classification – IUB Classification and Nomenclature System	ОК	4.0
Enzyme activity and Specific Enzyme Activity	OK	1.5
Enzyme-Substrate Complex	OK	1.0
Concept of substrate binding sites and active sites	OK	2.0
Factors affecting enzyme activity	OK	3.0
Coenzymes (Pyridoxal Phosphate, NAD & FAD)	JW	1.5
Cofactors	JW	1.5
Mechanism of enzymes catalysis (Chymotrypsin & Lysozyme)	BK -	3.0
Michealis-Memten Equation- derivation (Equilibrium assumption & Steady state)	ОК	3.0
Significance of K _M , k _{cat} and V _{max}	OK	2.5
Lineweaver-Burk Plot	ОК	0.5
Enzyme Inhibition - Competitive, Non-competitive and Un-competitive	OK	3.5
Regulation of Enzyme activity – allosteric regulation, covalent modification, zymogenicity	OK	4.5

PAPER III (Practical) Proteins and Enzymes

Marks: 25 (Internal Assessment= 06 & End Semester = 19)

Separation of proteins by SDS-PAGE	JW	8.0
Gel Filtration chromatography using protein mixture or dye	JW	6.0
Assay of Urease/Amylase activity	OK	4.0
Determination of KM and Vmax of Urease/ Amylase	OK	4.5
Effect of temperature on enzyme activity	OK	4.0
Effect of substrate concentration on enzyme activity	OK	3.5

Principal

(In - Charge) St. Edmund's College Shillong - 793003