CLASS XII (THEORY) CHEMISTRY

Total Periods 180

Unit I: Solid State (Periods 12)

Classification of solids based on different binding forces :molecular, ionic covalent and metallic solids, amorphous and crystalline solids(elementary idea),unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids ,number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties, Band theory of metals ,conductors, semiconductors and insulators and n and p type semiconductors .

Unit II : Solutions (Periods 12)

Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties – relative lowering of vapour pressure, Raoult's law , elevation7of B.P., depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass, Vant Hoff factor.

Unit III: Electrochemistry (Periods 14)

Redox reactions; conductance in electrolytic solutions, specific and molar conductivity variations of conductivity with concentration, Kohlrausch's Law, electrolysis and laws of electrolysis (elementary idea), dry cell – electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells. Relation between Gibbs energy change and EMF of a cell, fuel cells; corrosion.

Unit IV: Chemical Kinetics (Periods 12)

Rate of a reaction (average and instantaneous), factors affecting rates of reaction: concentration, temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory (elementary idea, no mathematical treatment). Activation energy, Arrhenious equation.

Unit V: Surface Chemistry (Periods 8)

Adsorption – physisorption and chemisorption; factors affecting adsorption of gases on solids; catalysis :homogenous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions; lyophillic, lyophobic multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsions – types of emulsions.

Unit VI: General Principles and Processes of Isolation of Elements (Periods 8)

Principles and methods of extraction – concentration, oxidation, reduction electrolytic method and refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

Unit VII: p-Block Elements (Periods 14)

Group 15 elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; nitrogen – preparation, properties and uses; compounds of nitrogen: preparation and properties of ammonia and nitric acid, oxides of nitrogen (structure only); Phosphorous-allotropic forms; compounds of phosphorous: preparation and properties of phosphine ,halides (PCl₃, PCl₅) and oxoacids (elementary idea only). *Group 16 elements* : General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; dioxygen: preparation, properties and uses; classification of oxides; ozone. Sulphur – allotropic forms; compounds of sulphur: preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of manufacture, properties and uses, oxoacids of sulphur (structures only). *Group 17 elements* : General introduction, electronic configuration and chemical properties; compounds of halogens: preparation, properties and uses of sulphur (structures only). *Group 17 elements* : General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; compounds of halogens: preparation, properties and uses of chlorine and hydrochloric acid, interhalogen compounds, oxoacids of

halogens (structures only). *Group 18 elements*: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.

8Unit VIII: d and f Block Elements (Period 14)

General introduction ,electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation. Preparation and properties of K₂Cr₂O₇ and KMnO₄. *Lanthanoids* – electronic configuration, oxidation states, chemical reactivity and lanthanoid

contraction and its consequences. *Actinoids* – Electronic configuration, oxidation states and comparison with lanthenoids .

Unit IX Coordination Compounds (Period 12)

Coordination compounds : Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, bonding, Werner's theory VBT,CFT; isomerism (structural and stereo)importance of coordination compounds (in qualitative analysis, extraction of metals and biological systems).

Unit X: Haloalkanes and Haloarenes (Periods 12)

Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions. Optical rotation. *Haloarenes:* Nature of C-X bond, substitution reactions (directive influence of halogen for monosubstituted compounds only). Uses and environmental effects of – dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.

Unit XI: Alcohols, Phenols and Ethers (Periods 12)

Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of dehydration, uses, with special reference to methanol and ethanol. *Phenols*: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols. *Ethers*: Nomenclature, methods of preparation, physical and chemical properties, uses.

Unit XII: Aldehydes, Ketones and Carboxylic Acids (Period 12)

Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, and mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes; uses. *Carboxylic Acids*: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.

Unit XIII: Organic Compounds Containing Nitrogen (Periods 10)

Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary secondary and tertiary amines. *Cyanides and Isocyanides* – will be mentioned at relevant places in context. *Diazonium salts*: Preparation, chemical reactions and importance in synthetic organic chemistry.

9Unit XIV: Biomolecules (Periods 12)

Carbohydrates – Classification (aldoses and ketoses), monosaccharide (glucose and fructose), D-L configuration, oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen): importance. *Proteins* - Elementary idea of a - amino acids, peptide bond, polypeptides, proteins, primary structure, secondary structure, tertiary structure and quaternary structure (qualitative idea only), denaturation of proteins; enzymes.

Hormones –Elementary idea (excluding structure).

Vitamins - Classification and functions. Nucleic Acids: DNA and RNA

Unit XV: Polymers (Periods 8)

Classification - Natural and synthetic, methods of polymerization (addition and condensation),

copolymerization. Some important polymers: natural and synthetic like polythene, nylon, polyesters, bakelite, rubber. Biodegradable and non-biodegradable polymers.

Unit XVI: Chemistry in Everyday Life (Periods 8)

1. 2. 3. Chemicals in medicines – analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antihistamines. Chemicals in food – preservatives, artificial sweetening agents, **elementary idea of antioxidants.** Cleansing agents – soaps and detergents, cleansing action.

CLASS XII (THEORY) BIOLOGY

(Total Periods = 180) I. Reproduction (Periods 35)

Reproduction in organisms: Reproduction, a characteristic feature of all organisms for continuation of species; Modes of reproduction – Asexual and sexual; Asexual reproduction; Modes- Binary fission, sporulation, budding, gemmule, fragmentation; vegetative propagation in plants. Sexual reproduction in flowering plants: Flower structure; Development of male and female gametophytes; Pollination–types, agencies and examples; Outbreedings devices; Pollen-Pistil interaction; Double fertilization; Post fertilization events– Development of endosperm and embryo, Development of seed and formation of fruit; Special modes– apomixis, parthenocarpy, polyembryony; Significance of seed and fruit formation. Human Reproduction: Male and female reproductive systems; Microscopic anatomy of testis and ovary; Gametogenesis- spermatogenesis

& oogenesis; Menstrual cycle; Fertilisation, embryo development upto blastocyst formation, implantation; Pregnancy and placenta formation (Elementary idea); Parturition (Elementary idea); Lactation (Elementary idea). Reproductive health: Need for reproductive health and prevention of sexually transmitted diseases (STD); Birth control- Need and Methods, Contraception and Medical Termination of Pregnancy (MTP); Amniocentesis; Infertility and assisted reproductive technologies – IVF, ZIFT, GIFT (Elementary idea for general awareness).

II. Genetics and Evolution (Periods 45)

Heredity and variation: Mendelian Inheritance; Deviations from Mendelism– Incomplete dominance, Co-dominance, Multiple alleles and Inheritance of blood groups, Pleiotropy; Elementary idea of polygenic inheritance; Chromosome theory of inheritance; Chromosomes and genes; Sex determination– In humans, birds, honey bee; Linkage and crossing over; Sex linked inheritance- Haemophilia, Colour blindness; Mendelian disorders in humans– Thalassemia; Chromosomal disorders in humans; Down's syndrome, Turner's and Klinefelter's syndromes. Molecular Basis of Inheritance: Search for genetic material and DNA as genetic material; Structure of DNA and RNA; DNA packaging; DNA replication; Central dogma; Transcription, genetic code, translation; Gene expression and regulation– Lac Operon; Genome and human genome project; DNA finger printing.

Evolution: Origin of life; Biological evolution and evidences for biological evolution (Paleontological, comparative anatomy, embryology and molecular evidence); Darwin's contribution, Modern Synthetic theory of Evolution; Mechanism of evolution– Variation (Mutation and Recombination) and Natural Selection with examples, types of natural selection; Gene flow and genetic dirft; Hardy- Weinberg's principle; Adaptive Radiation; Human evolution.

III Biology and Human Welfare (Periods 35)

Health and Disease: Pathogens; parasites causing human diseases (Malaria, Filariasis, Ascariasis, Typhoid, Pneumonia, common cold, amoebiasis, ring worm); Basic concepts of immunology–vaccines; Cancer, HIV and AIDs; Adolescence, drug and alcohol abuse. Improvement in food production: Plant breeding, tissue culture, single cell protein, Biofortification; Apiculture and

Animal husbandry. Microbes in human welfare: In household food processing, industrial production, sewage treatment, energy generation and as biocontrol agents and biofertilizers.

IV Biotechnology and Its Applications (Periods 30)

Principles and process of Biotechnology: Genetic engineering (Recombinant DNA technology). Application of Biotechnology in health and agriculture: Human insulin and vaccine production, gene therapy; Genetically modified organisms- Bt crops; Transgenic Animals; Biosafety issues–Biopiracy and patents.

V Ecology and environment (Periods 35)

Organisms and environment: Habitat and niche; Population and ecological adaptations; Population interactions-mutualism, competition, predation, parasitism; Population attributes-growth, birth rate and death rate, age distribution. Ecosystems: Patterns, components; productivity and decomposition; Energy flow; Pyramids of number, biomass, energy; Nutrient cycling (carbon and phosphorous); Ecological succession; Ecological Services- Carbon fixation, pollination, oxygen release. Biodiversity and its conservation: Concept of Biodiversity; Patterns of Biodiversity; Importance of Biodiversity; Loss of Biodiversity; Biodiversity conservation; Hotspots, endangered organisms, extinction, Red Data Book, biosphere reserves, National parks and sanctuaries. Environmental issues: Air pollution and its control; Water pollution and its control; Agrochemicals and their effects; Solid waste management; Radioactive waste management; Greenhouse effect and global warming; Ozone depletion; Deforestation; Any three case studies as success stories addressing environmental issues.

PRACTICALS

(Total Periods = 60)

List of Experiments

Study pollen germination on a slide.

Collect and study soil from at least two different sites and study them for texture, moisture content, pH and water holding capacity of soil. Correlate with the kinds of plants found in them.

Collect water from two different water bodies around you and study them for pH, clarity and presence of any living organisms.

Study the presence of suspended particulate matter in air at the two widely different sites.

Study of plant population density by quadrate method.

Study of plant population frequency by quadrate method.

Prepare a temporary mount of onion root tip to study mitosis.